

# Calculus

Week # 1

## AP CALCULUS AB CHAPTER 1 TEST

#### **DIRECTIONS:**

To receive full credit you must show all work. Leave your answers in radical form or as a reduced fraction unless specified otherwise. **GOOD LUCK** 

The following problems are worth 4 points each.

- 1. Give an example of a continuous function
- 2. Give an example of a function that has a non-removable discontinuity at x = -8.
- 3. Give an example of a function that has a removable discontinuity at (3, -4).
  - A. For questions 4-6 find any vertical Asymptotes or holes in the graphs. If there is a hole in the graph write it as an ordered pair.

$$4. \qquad f(x) = \frac{4}{x+5}$$

5. 
$$f(x) = \frac{x^2 - x - 6}{x - 3}$$

6. 
$$f(x) = \frac{x^2 - 4}{x^2 + 7x - 18}$$

The following problems are worth 6 points each.

B. For questions 7-20 find each limit. If the limit does not exist then write "No Limit". Give a reason for your answer.

7. 
$$\lim_{x \to 4} 3x^3 - 8x + 6$$

$$8. \qquad \lim_{x \to 0} \frac{\sqrt{x+16} - 4}{x}$$

9. 
$$\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{x}$$

10. 
$$\lim_{x \to -3^-} \frac{x-2}{x^2 - x - 12}$$

11. 
$$\lim_{x \to 4^+} \frac{-1}{x-4}$$

12. 
$$\lim_{x \to 3} ||x|| + 1$$

13. 
$$\lim_{\Delta x \to 0} \frac{3(x + \Delta x)^2 - 3x^2}{\Delta x}$$

14. 
$$\lim_{x \to 6^+} \frac{x-7}{x-6}$$

15. 
$$\lim_{x \to 9} \frac{x^2 + x - 90}{81 - x^2}$$

16. 
$$\lim_{x \to -3^{-}} ||x|| - 4$$

17. 
$$\lim_{x \to 7} f(x) = \begin{cases} 2x - 5 & \text{if } x \neq 7 \\ 12 & \text{if } x = 7 \end{cases}$$

18. 
$$\lim_{x \to 3^{-}} f(x) = \begin{cases} 3x + 4 & \text{if } x < 3 \\ -7 & \text{if } x \ge 3 \end{cases}$$

19. 
$$\lim_{x \to \frac{\pi}{6}} 2x \csc x$$

$$20. \qquad \lim_{x \to 0} \frac{\sin 4x}{5x}$$

The following problems are worth 12 points each.

- 21. If the limit of f(x) = 2 and the limit of  $g(x) = -\frac{1}{4}$  as  $x \to c$  for both f(x) and g(x). Find the limit of
  - a. f(x)+8g(x)

b.  $2f(x) \div 12g(x)$ 

c. 
$$-3f(x)$$

22. Find the value of c so that the following function is continuous everywhere on the real number line.

$$f(x) = \begin{cases} x^2 + 7 & \text{if } x \le -3 \\ \frac{2c - 8}{x} & \text{if } x > -3 \end{cases}$$

23. Use the intermediate value theorem to find the value of c for the indicated function and interval.  $\frac{x^2 + x}{x + 3}$  [-4,1] Where f(c) = 2.

The following problem is worth 16 points.

24. Use the bisection method three times to show that  $f(x) = 2x^3-4x+3$  has a zero on the interval [-3, 1]. Round your final answers to the nearest thousandth place. Write the exact zero of the function.

# AP CALCULUS AB CHAPTER 2 TEST

## **DIRECTIONS:**

To receive full credit you must show all work on a separate sheet of paper. Leave your final answers in terms of  $\pi$  or as a radical, and use positive exponents. *GOOD LUCK* 

The following problems are worth 8 points each.

- 1. Use the definition of the derivative to find the derivative of  $f(x) = 2x^2-5$ .
- 2. Find dy/dx for the function  $f(x) = 4x^5$
- 3. Find dy/dx for the function  $f(x) = 2x^{\pi}$
- 4. Find dy/dx for the function  $f(x) = \frac{3}{x^7}$
- 5. Find dy/dx for the function  $f(x) = (7x + 2)^5$
- 6. Find dy/dx for the function  $f(x) = \cos x + 3\sin x$

7. Find dy/dx for the function 
$$\frac{5x}{1 - \sec x}$$

- 8. Find dy/dx for the function  $f(x) = 6x^3(4-x)^2$
- 9. Find dy/dx for the function  $f(x) = 5 \tan^4(7x)$
- 10. Find dy/dx for the function  $f(x) = 25\sqrt[5]{x^7}$
- 11. Find  $d^2y/dx^2$  for the function  $x^2y^2 = 4$
- 12. Find dy/dx for the function  $3x + x^2y = 2y^3 7$
- 13. Find  $d^2y/dx^2$  for the  $x^2 + y^2 = 100$  at the point (-8, 6)
- 14. Find y''' of  $y = -3\cos 5x$ .

15. Find y''' of 
$$y = \frac{1}{2}x^{-4}$$

A. Use the information below to answer questions 16-18.

| х | u  | u' | v  | v' |
|---|----|----|----|----|
| 1 | 1  | -1 | 4  | 7  |
| 2 | 3  | 12 | -5 | 2  |
| 3 | -4 | 6  | 10 | -3 |

- 16. If A = u-4v find A' when x = 2.
- 17. If B = 4u/v find B' when x = 1
- 18. If D = -2uv find D' when x = 3
- 19. Find the equation of the tangent line at the indicated point.  $f(x) = \sin 2x$  at  $\left(\frac{\pi}{4}, 1\right)$
- 20. Find the coordinates where the function  $y = 3x^2 12x$  has a horizontal tangent.

The following problem is worth 10 points.

- 21. Suppose an M&M is dropped off a building with an initial height of 192 feet and an initial velocity of 176 feet per second.
  - a. Find the position equation for the M&M at any time  $t \ge 0$ .
  - b. When will the M&M hit the ground?
  - c. What is the instantaneous velocity of the M&M after 3 sec.?
  - d. What is the velocity of the M&M at any time  $t \ge 0$ ?
  - e. What is the velocity of the M&M when it makes impact with the ground?
- 22. Veronica is standing 90 meters due west of a set of north south railroad tracks. A southern bound train passes traveling at 40 meters per second. How fast is the distance between Veronica and the train changing after 3 sec.?
- 23. Coffee is being pored into a cylinder at the rate of 18 cm<sup>3</sup>/min. The diameter of the cylinder is 2 times the height. How fast is the level of coffee changing when the height is 6 cm?  $V = \pi r^2 h$
- 24. A 13 foot long ladder is leaning against the side of a house. The top of the ladder is sliding down the side of the house at a rate of 4 ft/sec.
  - a. How fast is the bottom of the ladder moving ways from the house when the ladder touches the house 12 feet above the ground?
  - b. How fast is the angle between the bottom of the ladder and the ground changing when the angle is  $30^{\circ}$ ?
  - c. Use the information from part a to help the question at what rate is the area of the triangle changing?

TEST Chapter 2A